ОКП 42 1874 ТН ВЭД ЕАЭС 9026 10 290 9

Утвержден ЮЯИГ.407721.003 РЭ - ЛУ

СИГНАЛИЗАТОР УРОВНЯ

СУ 300И

Руководство по эксплуатации ЮЯИГ.407721.003 РЭ

Уважаемый потребитель!

ООО предприятие «КОНТАКТ-1» благодарит Вас за внимание, проявленное к нашей продукции, и просит сообщить свои пожелания по улучшению содержания данного документа, а также описанного в нем изделия. Ваши пожелания можно направить по почтовому или электронному адресам:

390010, г. Рязань, проезд Шабулина, 18; ООО предприятие «КОНТАКТ-1»; e-mail: market@kontakt-1.ru; http://www.kontakt-1.ru,

а также связаться со службой маркетинга по телефонам:

(4912) 33-21-23, (4912) 38-75-99, (4912) 39-18-82.

В Вашем распоряжении телефоны-факсы:

(4912) 21-42-18 и (4912) 37-63-51.

Воспользовавшись указанными выше координатами, Вы можете получить консультации специалистов предприятия по применению нашей продукции.

Пожалуйста, внимательно изучите настоящее руководство. Это позволит Вам в кратчайшие сроки и наилучшим образом использовать приобретенное изделие.

ООО предприятие «КОНТАКТ-1» оставляет за собой право вносить в настоящее руководство и конструкцию изделия изменения без уведомления об этом потребителей.

Авторские права на изделие и настоящее руководство принадлежат

ООО предприятие «КОНТАКТ-1»

Содержание

1 Описание и работа	4
1.1 Назначение	4
1.2 Основные параметры и характеристики	
1.3 Устройство и работа	
1.4 Обеспечение взрывозащиты	
1.5 Маркировка	11
2 Использование по назначению	
2.1 Подготовка к использованию	12
2.2 Возможные неисправности и способы их устранения	15
3 Техническое обслуживание	15
4 Транспортирование и хранение	15
5 Меры безопасности	
6 Особые отметки	16

Руководство по эксплуатации содержит сведения о конструкции, принципе действия, характеристиках сигнализатора уровня взрывозащищенного исполнения СУ 300И (далее - сигнализатор уровня) и указания, необходимые для правильной и безопасной его эксплуатации, технического обслуживания, текущего ремонта, хранения и транспортирования.

Изготовитель - ООО предприятие «КОНТАКТ-1», Россия, 390010, г. Рязань, проезд Шабулина, 18.

1 ОПИСАНИЕ И РАБОТА

1.1 Назначение

- 1.1.1 Сигнализатор уровня предназначен для контроля (сигнализации) трех предельных положений уровня электропроводных жидкостей, в т.ч. границы раздела двух несмешивающихся жидкостей (например, нефтепродукт-вода), в одном или в разных резервуарах.
 - 1.1.2 В состав сигнализатора уровня входят:
- три одноэлектродных датчика по числу контролируемых уровней или один трехэлектродный датчик;
- вторичный преобразователь.

Сигнализатор уровня соответствует требованиям технического регламента ТР ТС 012/2011, и стандартов ГОСТ 31610.0-2014 (IEC 60079-0:2011), ГОСТ 31610.11-2014 (IEC 60079-11:2011), ГОСТ 31610.26-2012/IEC 60079-26:2006.

- 1.1.3 Вторичный преобразователь, входящий в состав сигнализатора уровня СУ 300И, с входными электрическими искробезопасными цепями уровня "ia" имеет маркировку взрывозащиты [Ex ia Ga] IIB X, согласно которой и ГОСТ IEC 60079-14 не предназначен для установки во взрывоопасных зонах.
- 1.1.4 Вторичный преобразователь может использоваться отдельно в качестве трехканального устройства барьерной взрывозащиты между контактными или резистивными датчиками, используемыми во взрывоопасных установках, и искроопасными цепями сигнальных устройств или исполнительных механизмов.
- 1.1.5 Датчики, входящие в состав сигнализатора уровня СУ 300И, не содержащие нанесенной по всему чувствительному элементу (ЧЭ) непроводящей поверхности, имеют маркировку взрывозащиты: трехэлектродный "0Ex іа ІІВ Т3 Ga X", одноэлектродный "Ex", согласно которой и ГОСТ ІЕС 60079-14 могут устанавливаться в соответствующих взрывоопасных зонах.
- 1.1.6 Одноэлектродные и трехэлектродные датчики сигнализатора уровня, содержащие нанесенную по всему ЧЭ непроводящую поверхность (фторопласт), маркировки взрывозащиты не имеют и для установки во взрывоопасных зонах не предназначены.
- 1.1.7 В соответствии с классификацией ГОСТ Р 52931-2008 сигнализатор уровня относится:
- по наличию информационной связи к изделиям, предназначенным для информационной связи с другими изделиями;
- по виду энергии носителя сигналов в канале связи к электрическим изделиям;
- в зависимости от эксплуатационной законченности к изделиям третьего порядка;
- по защищенности от воздействия окружающей среды к изделиям взрывозащищенным, защищенным от попадания внутрь изделия пыли и воды;
- по стойкости к механическим воздействиям к изделиям вибропрочного исполнения группы N3 (по требованию потребителя);

- по стойкости к воздействию температуры и влажности окружающего воздуха – к изделиям группы исполнения C4.

Сигнализатор уровня является средством автоматизации технологических процессов с характеристиками точности, нормируемыми по ГОСТ 23222-88.

1.1.8 По числу электродов чувствительного элемента датчики изготовляются следующих исполнений (первая цифра в базовом обозначении датчика - позиция 0 полного условного обозначения):

 1Π – одноэлектродный;

3П – трехэлектродный.

По конструкции чувствительного элемента (ЧЭ) датчики изготавливаются следующих исполнений (цифра на позиции 1 полного условного обозначения датчика):

1 – стержневой;

2 - гибкий.

По степени защищенности от агрессивности контролируемой среды (в пределах стойкости указанных ниже материалов или покрытий ЧЭ) датчики изготавливаются следующих исполнений (цифра на позиции 2 полного условного обозначения датчика):

- 2 углеродистая сталь с покрытием цинком;
- 3 нержавеющая сталь 12Х18Н10Т;
- 5 сталь, защищённая фторопластом (только для датчиков с гибким электродом, не имеющих маркировки взрывозащиты).

Взрывозащищённое исполнение датчика обозначается буквой "И" на позиции 3 полного условного обозначения датчика.

В зависимости от максимальной температуры и давления контролируемой среды датчик изготавливается следующих исполнений (позиция 4 полного условного обозначения датчика):

буква отсутствует – до 60 °C, до 0,6 МПа;

Т – до 150 °C, до 1,6 МПа.

Рабочая длина измеряется в метрах и указывается на позиции 5 полного условного обозначения датчика.

По виду крепления датчик изготавливается следующих исполнений (позиция 6 полного условного обозначения датчика):

A – облегчённое (штуцер с резьбой M20x1,5-6g);

У – усиленное (штуцер с резьбой $G1\frac{1}{2}$ -A).

В зависимости от материала штуцера или его покрытия датчик изготавливается следующих исполнений (буква на позиции 7 обозначения):

О – углеродистая сталь с цинковым покрытием;

Н – сталь нержавеющая без покрытия.

Структура полного условного обозначения одноэлектродного датчика:

1Π	X	X	И	X	$_{-}$ XX,XX	Α	X
0	1	2	3	4	5	6	7

- 0 базовое обозначение одноэлектродного датчика;
- 1 конструкция чувствительного элемента;
- 2 материал и покрытие чувствительного элемента;
- 3 обозначение взрывозащищённого исполнения датчика (только для датчиков, имеющих маркировку взрывозащиты);

- 4 конструктивное исполнение в зависимости от температуры и давления контролируемой среды;
- 5 рабочая длина чувствительного элемента в метрах;
- 6 исполнение присоединительного элемента;
- 7 обозначение материала или покрытия штуцера.

Структура полного условного обозначения трёхэлектродного датчика:

- 0 базовое обозначение трёхэлектродного датчика;
- 1 конструкция чувствительного элемента;
- 2 материал и покрытие чувствительного элемента;
- 3 обозначение взрывозащищённого исполнения датчика (только для датчиков, имеющих маркировку взрывозащиты);
- 4 отсутствует;
- 5 рабочая длина каждого электрода чувствительного элемента в метрах;
- 6 исполнение присоединительного элемента;
- 7 обозначение материала или покрытия штуцера.

Пример обозначения сигнализатора уровня в других документах и (или) при заказе:

а) сигнализатора уровня, укомплектованного тремя одноэлектродными датчиками со стержневыми электродами из нержавеющей стали 12X18H10T, максимальная температура контролируемой среды до $60\,^{\circ}$ С, рабочие длины 470,25,0,6 и 1,0 м, соответственно; элемент крепления — штуцер с резьбой 420x1,5 — 4000 из углеродистой стали с цинковым покрытием:

Сигнализатор уровня СУ 300И ТУ 4218-004-12196008-02 в составе:

1 7 1	
преобразователь вторичный	1 шт.
датчик 1П13И – 0,25АО	1 шт.
датчик 1П13И – 0,6АО	1 шт.
датчик 1П13И –1,0АО	1 шт.

б) то же с трехэлектродным датчиком (штуцер с резьбой $G1\frac{1}{2}$ -A из углеродистой стали с цинковым покрытием):

Сигнализатор уровня СУ 300И ТУ 4218-004-12196008-02 в составе:

преобразователь вторичный 1 шт. датчик $3\Pi 13H - 0.25/0.6/1.0$ VO 1 шт.

1.1.9 Условные обозначения исполнений, рабочие длины электродов датчиков и параметры контролируемой датчиками среды приведены в таблице 1.

Таблица 1

Иотолизми четине	Рабочая длина	Параметры контр	ролируемой среды	
Исполнение датчика	электрода, (L), м	температура, °С	давление, МПа	
1П12И, 1П13И, 3П12И, 3П13И	0,1 1,0	до 60	до 0,6	
1П22И, 1П23И, 1П25, 3П22И, 3П23И, 3П25	1,0 6,0			
1П12ИТ, 1П13ИТ	0,1 1,0			
1П22ИТ, 1П23ИТ, 1П25Т	1,0 6,0	до 150	до 1,6	

Примечание. По особому заказу могут поставляться датчики других длин, а также рассчитанные на другие параметры контролируемой среды.

танные на другие параметры контролируемой среды.	
1.2 Основные параметры и характеристики1.2.1 Питающая сеть:1.2.2 Диапазон значений напряжения питания:1.2.3 Потребляемая мощность1.2.4 Параметры контролируемой среды:	220 B, 50 ± 1 Гц 187 242 В не более 10 В·А
- удельная электропроводность	св. 0,02 См/м
- температура, давление 1.2.5 Порог срабатывания ¹⁾ 1.2.6 Зона возврата ²⁾ 1.2.7 Электрическая нагрузка на контакты выходных реле,	см. таблицу 1 8 13 кОм 1 5 кОм
не более:	
- ток	2,5 A
- напряжение:	
а) переменного тока	250 B
б) постоянного тока	30 B
- коммутируемая мощность постоянного тока	75 Bt
- коммутируемая мощность переменного тока 1.2.8 Максимальные значения в искробезопасной цепи	100 B·A
(на один канал):	
- выходной ток Io	18 мА
- выходное напряжение Uo	20 B
- внешняя емкость Со	0 ,5 мк Φ
- внешняя индуктивность Lo 1.2.9 Параметры искробезопасных цепей датчиков:	$1,0$ м Γ н
- максимальный входной ток Ii	18 мА
- максимальное входное напряжение Ui	20 B

¹⁾ Порог срабатывания – верхний предел сопротивления на входе, вызывающего срабатывание выходного реле (соответствует контакту электрода датчика с контролируемой средой).

²⁾ Зона возврата (дифференциал) – разность сопротивлений на входе, соответствующих отпусканию и срабатыванию выходного реле.

- максимальная внутренняя емкость Сі

2,3 нФ

- максимальная внутренняя индуктивность Li

15 мкГн

1.2.10 Сопротивление линии связи между датчиком

и вторичным преобразователем

не более 25 Ом (что соответствует длине линии связи 1000 м при сечении медной жилы 0,75 мм²)

1.2.11 Параметры окружающей среды при эксплуатации:

- температура датчиков минус 30 ... плюс 50 °C

- температура вторичного преобразователя минус 10 ... плюс 50 °C

- относительная влажность до 95 % (при 35 °C)

1.2.12 Вибропрочность:

- диапазон частот 5 ... 80 Гц

- ускорение до 9.8 м/c^2

1.2.13 Степень защиты, обеспечиваемая оболочками датчика и вторичного преобразователя, по ГОСТ 14254-2015 (IEC 60529:2013)

IP54

1.2.14 Показатели надежности:

- наработка на отказ, не менее 67000 час

- срок службы 14 лет

1.3 Устройство и работа

1.3.1 Одноэлектродный датчик (рисунок 1) состоит из штуцера 1, стержневого или гибкого электрода 2, оттягивающего груза 3 (для гибкого электрода), изолятора 4. Резиновый защитный колпачок 5 предохраняет место подключения провода линии связи от случайного прикосновения, повреждения и неблагоприятного воздействия окружающей среды. Датчики, предназначенные для работы в контролируемой среде при температуре свыше 60 °C, имеют втулку 6 и кабельный ввод 7.

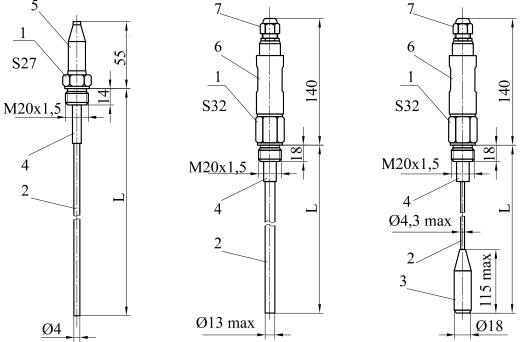


Рисунок 1 - Датчики одноэлектродные, внешний вид, габаритные и присоединительные размеры

- 1.3.2 У трехэлектродного датчика (рисунок 2) на штуцере 1 закреплен корпус 6 с кабельным вводом 7 и крышкой 8.
- 1.3.3 Материал стержня и оттягивающего груза сталь с покрытием цинком или нержавеющая сталь 12X18H10T определяется заказом в зависимости от степени агрессивности контролируемой среды.
- 1.3.4 В качестве изоляции электрода от корпуса у одноэлектродных датчиков в зависимости от температуры и давления в объекте контроля может использоваться фторопласт или керамика, у трехэлектродных датчиков фторопласт (см. таблицу 1).
- 1.3.5 Вторичный преобразователь (рисунок 3) состоит из корпуса 1, крышки 2 и электронного модуля, расположенного внутри корпуса. Для подключения заземляющего проводника служит зажим заземления 6 (ЗШ-С-5х25-1 ГОСТ 21130-75). На нижней стороне корпуса расположены три кабельных ввода 3, 4, 5. На крышке расположены три светофильтра 7 для индикаторов, сигнализирующих срабатывание выходных реле.

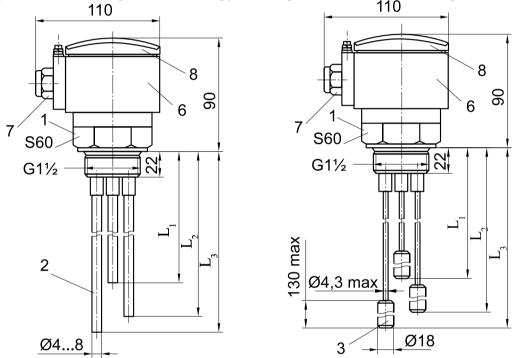


Рисунок 2 - Датчики трёхэлектродные, внешний вид, габаритные и присоединительные размеры

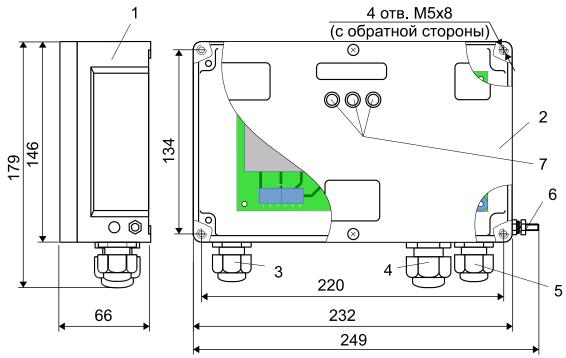


Рисунок 3 - Внешний вид, габаритные и присоеденительные размеры вторичного преобразователя

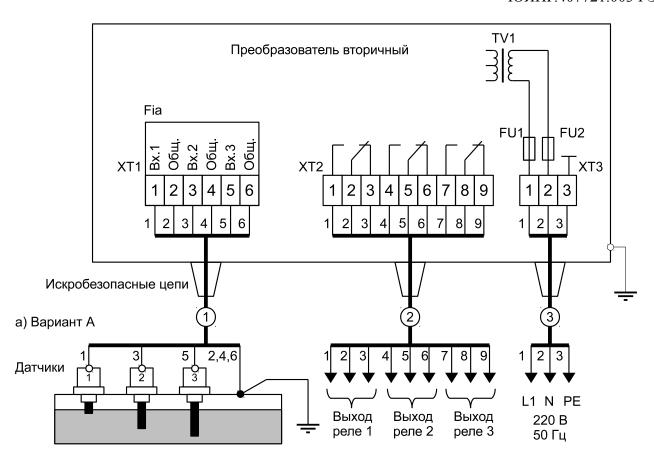
- 1.3.6 При отсутствии контакта электрода с контролируемой средой сопротивление в цепи датчика близко к бесконечности. Когда уровень электропроводной среды повышается до соприкосновения с электродом, сопротивление в цепи датчика резко уменьшается. Если уровень понижается и контакт электрода со средой исчезает, сопротивление в цепи датчика снова возрастает. Принцип действия сигнализатора основан на преобразовании этого сопротивления в скачок постоянного тока, который, в свою очередь, используется для управления состоянием выходного реле и световой сигнализации.
- 1.3.7 К электроду датчика приложено низкое напряжение переменного тока 50 Гц, поэтому электрохимическое разложение контролируемой среды и коррозия электрода практически исключаются.
 - 1.4 Обеспечение взрывозащиты
- 1.4.1 Сигнализатор уровня относятся к взрывозащищенному оборудованию с видом взрывозащиты "искробезопасная цепь" уровня "ia" по ГОСТ 31610.11-2014 (IEC 60079-11:2011).
- 1.4.2 Искробезопасность электрических цепей датчика достигается за счет включения в сигнализатор искрозащитных элементов, ограничивающих максимальное выходное напряжение Uo и максимальный выходной ток Io до безопасных значений.
- 1.4.3 Конструктивно искрозащитные элементы объединены в неразборный блок, размещенный внутри корпуса вторичного преобразователя.
- 1.4.4 Максимальная внешняя индуктивность Lo и максимальная внешняя емкость Co электрической цепи датчика и линии связи ограничена значениями 1~мГн и 0,5~мк Φ соответственно.
- 1.4.5 Знак X, стоящий после маркировки взрывозащиты, означает, что при эксплуатации сигнализатора уровня необходимо соблюдать следующие специальные условия:
- при выполнении монтажа внешних кабелей необходимо предусматривать устройства для разгрузки жил кабелей от растягивающих усилий на расстоянии не более 0,5 м от кабельных вводов;

- содержание легких сплавов в материале корпуса с крышкой модуля электронного датчиков превышает предельные значения для уровня взрывозащиты оборудования Ga. Необходимо оберегать от воздействий, способных вызвать образование фрикционных искр.
- 1.4.6 Вторичный преобразователь выполнен в соответствии с требованиями ГОСТ 31610.0-2014 (IEC 60079-0:2011), ГОСТ 31610.11-2014 (IEC 60079-11:2011):
- искробезопасные цепи гальванически не связаны с остальными цепями и отделены от силовых и сигнальных цепей печатным проводником шириной не менее 1,5 мм;
- сетевая обмотка трансформатора питания TV1 защищена плавкими предохранителями FU1 и FU2 типа BПМ2-0,1A;
- трансформатор питания TV1 является стойким к короткому замыканию вторичных обмоток и имеет усиленную изоляцию обмоток;
- для температурной защиты трансформатора применяется термопредохранитель TERMO FUSE 90C 3A DIP с температурой срабатывания 90°C;
- исполнительные устройства (цепи сигнализации) подключаются через герметизированные разделительные реле;
- электрический монтаж и печатные платы соответствуют требованиям ГОСТ 31610.11-2014 (IEC 60079-11:2011).
 - 1.5 Маркировка
 - 1.5.1 Маркировка сигнализатора уровня содержит:
- а) на вторичном преобразователе:
- тип сигнализатора уровня (наименование и условное обозначение сигнализатора уровня, включая обозначение ТУ);
- название страны и наименование предприятия-изготовителя;
- значение номинального напряжения питания и значение максимального эффективного напряжения переменного тока Um;
- значение потребляемой мощности;
- код степени защиты, обеспечиваемой оболочкой, по ГОСТ 14254-2015 (IEC 60529:2013);
- заводской номер;
- месяц и год изготовления;
- знак заземления;
- маркировку взрывозащиты;
- изображение специального знака взрывобезопасности;
- предупредительную надпись "ПРЕДУПРЕЖДЕНИЕ. ОТКРЫВАТЬ, ОТКЛЮЧИВ ОТ СЕТИ";
- надпись "Искробезопасные цепи" и значения параметров Co, Lo, Uo, Io;
- диапазон температур окружающей среды;
- номер сертификата соответствия;
- б) на трехэлектродном датчике:
- наименование и условное обозначение датчика;
- название страны и наименование предприятия-изготовителя;
- код степени защиты, обеспечиваемой оболочкой, по ГОСТ 14254-2015 (IEC 60529:2013);
- заводской номер;
- месяц и год изготовления;

- маркировку взрывозащиты;
- изображение специального знака взрывобезопасности;
- значения максимальной внутренней емкости Ci и максимальной внутренней индуктивности Li;
- значения максимального входного напряжения Ui и максимального входного тока Ii;
- диапазон температур окружающей среды;
- номер сертификата соответствия;
- знак заземления;
- в) на одноэлектродном датчике:
- знак взрывозащиты "Ех".
- 1.5.2 Маркировка (кроме маркировки взрывозащиты) наносится полиграфическим методом на липких аппликациях.

Маркировка взрывозащиты вторичного преобразователя и трехэлектродного датчика наносится электрохимическим методом на металлических пластинах.

Маркировка одноэлектродного датчика наносится гравированием или ударным методом на элементе крепления датчика.


2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

- 2.1 Подготовка к использованию
- 2.1.1 Внешним осмотром проверить комплектность сигнализатора уровня, убедиться в отсутствии механических повреждений датчика и вторичного преобразователя.

ВНИМАНИЕ! ЭКСПЛУАТАЦИЯ СИГНАЛИЗАТОРА УРОВНЯ СО СКОЛАМИ И (ИЛИ) ТРЕЩИНАМИ НА НАРУЖНЫХ ПОВЕРХНОСТЯХ ДАТЧИКА ИЛИ ВТОРИЧНОГО ПРЕОБРАЗОВАТЕЛЯ НЕ ДОПУСКАЕТСЯ!

- 2.1.2 Монтаж сигнализатора уровня должен производиться с учетом требований ГОСТ IEC 60079-14-2013. Подключение сигнализатора уровня должно производиться при отключенном напряжении питания.
- 2.1.3 Перед монтажом сигнализатора уровня рекомендуется произвести проверку работоспособности следующим образом:
- подключить датчики ко вторичному преобразователю согласно схеме подключения (рисунок 4) и подать питание;
- прикоснуться к электродам проводником, подключенным к зажиму заземления, при этом должны загореться соответствующие светодиоды сигнализации на крышке вторичного преобразователя.
- 2.1.4 После монтажа рекомендуется проверить настройку сигнализатора уровня непосредственно на объекте с контролируемой средой следующим образом:
- освободить резервуар от контролируемой среды, при этом светодиоды сигнализации не должны гореть;
- заполнить резервуар до касания среды всеми датчиками светодиоды должны загореться.
- 2.1.5 Датчик устанавливается на резервуаре в резьбовое гнездо и уплотняется прокладкой из соответствующего материала.
- 2.1.6 Место установки датчика должно выбираться таким образом, чтобы исключалась возможность повреждения датчика при заполнении резервуара и соприкосновение ЧЭ со стенками резервуара.

- 2.1.7 Металлический резервуар должен иметь соединение с заземляющим контуром. В случае использования сигнализатора уровня на неметаллических резервуарах должен быть установлен дополнительный датчик 4 (рисунок 4, вариант Б).
- 2.1.8 Вторичный преобразователь закрепляется четырьмя винтами М5 с тыльной стороны щита (рисунок 3).
- 2.1.9 Для заземления корпуса вторичного преобразователя используется зажим заземления 6 ЗШ-С-5х25 ГОСТ 21130-75 (см. рисунок 3), снабженный знаком "земля". Заземление должно выполняться медным проводником с поперечным сечением не менее 1,5 мм².
- 2.1.10 Электрический монтаж должен выполняться в соответствии со схемой подключения (рисунок 4) проводом или кабелем с медными жилами сечением $0.75 \dots 2 \text{ мм}^2$.
- 2.1.11 После окончания работ по размещению и монтажу установить на место крышки датчика и вторичного преобразователя. Один из винтов крышки вторичного преобразователя должен быть опломбирован.

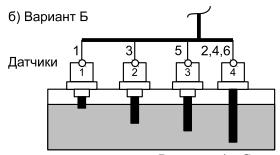


Рисунок 4 - Схема электрическая подключения

- 1. Fia блок искрозащиты.
- 2. Вариант А схема подключения для электропроводящего резервуара.
- 3. Для резервуара с неэлектропроводными станками (вариант Б) необходимо применять дополнительный датчик 4 с электродом, длиной не менее, чем у датчика 3.
- 4. Характеристики кабелей:

материал жилы - медь;

сечение жилы:

максимальное -2 мм²;

минимальное - 0,35 мм²;

минимальное для искробезопасных цепей - 1,0 мм²;

наружный диаметр по изоляции кабелей 1 и 3 - 7.5 ... 12,5 мм;

наружный диаметр по изоляции кабеля 2 - 8.5 ... 14 мм.

- 5. Значение максимальной внешней ёмкости и максимальной внешней индуктивности в искробезопасных цепяк (кабель 1): Co = 0.5 мкФ, Lo = 1.0 мГн.
- 6. Нагрузка на контакты реле, не более:

на переменном токе 2,5 Å, 250 B, 100 B·A

на постоянном токе 2,5 A, 30 B, 75 Вт.

- 2.2 Возможные неисправности и способы их устранения
- 2.2.1 Некоторые простейшие неисправности сигнализатора уровня, их причины и способы устранения приведены в таблице 2.

Таблина 2

Внешнее проявление неисправности	Вероятная причина	Способ устранения
1 При соприкосновении электрода датчика	Обрыв линии связи соответствующего датчика	Проверить линию связи и устранить обрыв
с контролируемой средой выходное реле не срабатывает, светодиод не загорается	Отсутствие питания от сети	Восстановить питание
	Неэлектропроводная пленка на электроде датчика	Очистить электрод датчика
2 При осушении электрода датчика выходное реле не возвращается в исходное состояние, светодиод	Замыкание линии связи или электрода соответствующего датчика на корпус	Проверить линию связи и устранить замыкание
не гаснет	Электропроводящие отложения на изоляторе датчика	Очистить изолятор датчика

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 3.1 Техническое обслуживание сигнализатора уровня необходимо производить два раза в год или через 5000 ч эксплуатации в следующем порядке:
- осмотреть датчик, вторичный преобразователь, обратив внимание на наличие пломбы по п. 2.1.11, удалить пыль и грязь с наружных поверхностей;
- при необходимости очистить электрод датчика от загрязнений и отложений тканью, смоченной соответствующим растворителем (бензином, щелочным раствором);
- проверить надежность крепления датчика;
- проверить целостность заземляющих проводников;
- проверить сохранность маркировки взрывозащиты.
- 3.2 Техническое обслуживание должно осуществляться с соблюдением требований "Межотраслевых правил по охране труда (правила безопасности) при эксплуатации электроустановок" ПОТ Р М-016-2001 и настоящего руководства.

4 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 4.1 Транспортирование сигнализаторов уровня в упаковке предприятия-изготовителя может осуществляться в закрытом транспорте любого вида.
- 4.2 Сигнализаторы уровня необходимо хранить в отапливаемом помещении при температуре окружающего воздуха от плюс 5 до плюс $40\,^{\circ}\mathrm{C}$ и относительной влажности до $80\,\%$.

5 МЕРЫ БЕЗОПАСНОСТИ

- 5.1 Во время технического обслуживания, не связанного с настройкой, перед снятием крышки необходимо отключить вторичный преобразователь от питающей сети. Эксплуатация сигнализатора уровня с открытой крышкой запрещена.
- 5.2 По способу защиты человека от поражения электрическим током вторичный преобразователь соответствует классу I, датчики классу III по ГОСТ 12.2.007-75. Зашита обеспечивается:
- защитной оболочкой;
- усиленной изоляцией сетевой обмотки трансформатора питания от вторичных обмоток и от корпуса;
- малым напряжением питания датчика;
- защитным заземлением и (или) занулением.
- 5.3 Сигнализатор уровня должен обслуживаться электротехническим персоналом, имеющим квалификационную группу по электробезопасности не ниже III.

6 ОСОБЫЕ ОТМЕТКИ		